How do you find all zeros with multiplicities of f(x)=x^6-3x^3-10f(x)=x63x310?

1 Answer
Dec 9, 2017

The six zeros are:

x = root(3)(5)x=35

x = -1/2root(3)(5)+-1/2sqrt(3)root(3)(5)ix=1235±12335i

x = -root(3)(2)x=32

x = 1/2root(3)(2)+-1/2sqrt(3)root(3)(2)ix=1232±12332i

all with multiplicity 11

Explanation:

x^6-3x^3-10 = (x^3-5)(x^3+2)x63x310=(x35)(x3+2)

Then:

x^3-5 = (x^3-(root(3)(5))^3)x35=(x3(35)3)

color(white)(x^3-5) = (x-root(3)(5))(x^2+root(3)(5)x+root(3)(25))x35=(x35)(x2+35x+325)

color(white)(x^3-5) = (x-root(3)(5))((x+1/2root(3)(5))^2+(1/2sqrt(3)root(3)(5))^2)x35=(x35)((x+1235)2+(12335)2)

color(white)(x^3-5) = (x-root(3)(5))((x+1/2root(3)(5))^2-(1/2sqrt(3)root(3)(5)i)^2)x35=(x35)((x+1235)2(12335i)2)

color(white)(x^3-5) = (x-root(3)(5))(x+1/2root(3)(5)-1/2sqrt(3)root(3)(5)i)(x+1/2root(3)(5)+1/2sqrt(3)root(3)(5)i)x35=(x35)(x+123512335i)(x+1235+12335i)

and:

x^3+2 = (x^3+(root(3)(2))^3)x3+2=(x3+(32)3)

color(white)(x^3+2) = (x+root(3)(2))(x^2-root(3)(2)x+root(3)(4))x3+2=(x+32)(x232x+34)

color(white)(x^3+2) =(x+root(3)(2))((x-1/2root(3)(2))^2+(1/2sqrt(3)root(3)(2))^2)x3+2=(x+32)((x1232)2+(12332)2)

color(white)(x^3+2) =(x+root(3)(2))((x-1/2root(3)(2))^2-(1/2sqrt(3)root(3)(2)i)^2)x3+2=(x+32)((x1232)2(12332i)2)

color(white)(x^3+2) =(x+root(3)(2))(x-1/2root(3)(2)-1/2sqrt(3)root(3)(2)i)(x-1/2root(3)(2)+1/2sqrt(3)root(3)(2)i)x3+2=(x+32)(x123212332i)(x1232+12332i)

So the six zeros are:

x = root(3)(5)x=35

x = -1/2root(3)(5)+-1/2sqrt(3)root(3)(5)ix=1235±12335i

x = -root(3)(2)x=32

x = 1/2root(3)(2)+-1/2sqrt(3)root(3)(2)ix=1232±12332i