How do you find #cos67.5# using the half-angle identity?
2 Answers
Explanation:
The Half-Angle Identity is
Taking,
I got
Since
#cos^2(x) = (1 + cos(2x))/2#
#cos^2(x/2) = (1 + cosx)/2#
#:. cos(x/2) = pmsqrt((1 + cosx)/2)#
Since
#cos(135^@/2) = +sqrt((1 + cos(135^@))/2)#
#= sqrt((1 + cos((3pi)/4))/2)#
#= sqrt((1 - sqrt2/2)/2)#
#= sqrt((2/2 - sqrt2/2)/2) = sqrt(((2 - sqrt2)/2)/2)#
#= sqrt((2 - sqrt2)/4)#
#= color(blue)(sqrt(2 - sqrt2)/2 ~~ 0.3827)#