How do you find sin(x/2) if cscx=3?

2 Answers
May 17, 2015

Since csc x=3, sin x= 1/3 and therefore cos x=sqrt(8/9)= (2sqrt2)/3

Since cosx equals 1- 2sin^2 (x/2), hence

2sin^2 (x/2)= 1-cosx

= 1- (2sqrt2)/3 =(3-2sqrt2)/3 = (sqrt2 -1)^2 /3

sin^2 (x/2)= (sqrt2 -1)^2 /6

sin(x/2) = (sqrt2-1)/sqrt6

May 17, 2015

Use trig identity: 1 + cot^2 x = 1/sin^2 x = csc^2 x

1/sin^2 x = 9 -> sin^2 x = 1/9 -> sin x = +1/3

cos x = 1 - sin^2 x = 1 - 1/9 = 8/9 -> cos x = +(sqrt2)/3

To find sin (x/2) use trig identity: 2sin^2 (x/2) = 1 - cos x.

2sin^2 (x/2) = 1 - cos x = 3/3 - (sqrt2)/3 = 0.53

sin^2 (x/2) = 0.265 -> sin (x/2) = 0.51