How do you find the antiderivative #f(x)=6/x^5#? Calculus Introduction to Integration Integrals of Rational Functions 1 Answer Bill K. Jun 8, 2015 Note that #\int x^{n}\ dx=x^{n+1}/(n+1)+C# when #n!=-1# and that #\int af(x)\ dx=a\int f(x)\ dx# for any constant #a#. Hence #\int 6/(x^5)\ dx=6\int x^{-5}\ dx=6* x^{-4}/(-4)+C=-3/(2x^4)+C# Answer link Related questions How do you integrate #(x+1)/(x^2+2x+1)#? How do you integrate #x/(1+x^4)#? How do you integrate #dx / (2sqrt(x) + 2x#? What is the integration of #1/x#? How do you integrate #(1+x)/(1-x)#? How do you integrate #(2x^3-3x^2+x+1)/(-2x+1)#? How do you find integral of #((secxtanx)/(secx-1))dx#? How do you integrate #(6x^5 -2x^4 + 3x^3 + x^2 - x-2)/x^3#? How do you integrate #((4x^2-1)^2)/x^3dx #? How do you integrate #(x+3) / sqrt(x) dx#? See all questions in Integrals of Rational Functions Impact of this question 3161 views around the world You can reuse this answer Creative Commons License