Let us subst. e^x=tany rArr e^xdx=sec^2ydy, or, dx=sec^2y/e^x*dy=sec^2y/tany*dy=1/(cosysiny)dyex=tany⇒exdx=sec2ydy,or,dx=sec2yex⋅dy=sec2ytany⋅dy=1cosysinydy
:. I=intsqrt(1+e^(2x))dx
=int{sqrt(1+tan^2y)/(cosysiny)}dy,
=int1/(cos^2ysiny)dy=int{(siny)/(cos^2ysin^2y)}dy.
Hence, cosy=t rArr -sinydy=dt, and, :.,
I=-int1/{t^2(1-t^2)}dt,
=int1/{t^2(t^2-1)}dt=int[{t^2-(t^2-1)}/{t^2(t^2-1)}]dt,
=int[t^2/{t^2(t^2-1)}-(t^2-1)/{t^2(t^2-1)}]dt,
=int(1/(t^2-1)-1/t^2)dt,
=1/2ln|(t-1)/(t+1)|+1/t,
=1/2ln|(cosy-1)/(cosy+1)|+1/cosy,
=1/2ln|(1-secy)/(1+secy)|+secy.
Since, tany=e^x rArr secy=sqrt(1+tan^2y)=sqrt(1+e^(2x)), we get,
I=1/2ln|(1-sqrt(1+e^(2x)))/(1+sqrt(1+e^(2x)))|+sqrt(1+e^(2x))+C.
Enjoy Maths.!