How do you find the antiderivative of (1 + e^(2x)) ^(1/2)(1+e2x)12?

1 Answer
May 8, 2017

1/2ln|(1-sqrt(1+e^(2x)))/(1+sqrt(1+e^(2x)))|+sqrt(1+e^(2x))+C.12ln11+e2x1+1+e2x+1+e2x+C.

Explanation:

Let us subst. e^x=tany rArr e^xdx=sec^2ydy, or, dx=sec^2y/e^x*dy=sec^2y/tany*dy=1/(cosysiny)dyex=tanyexdx=sec2ydy,or,dx=sec2yexdy=sec2ytanydy=1cosysinydy

:. I=intsqrt(1+e^(2x))dx

=int{sqrt(1+tan^2y)/(cosysiny)}dy,

=int1/(cos^2ysiny)dy=int{(siny)/(cos^2ysin^2y)}dy.

Hence, cosy=t rArr -sinydy=dt, and, :.,

I=-int1/{t^2(1-t^2)}dt,

=int1/{t^2(t^2-1)}dt=int[{t^2-(t^2-1)}/{t^2(t^2-1)}]dt,

=int[t^2/{t^2(t^2-1)}-(t^2-1)/{t^2(t^2-1)}]dt,

=int(1/(t^2-1)-1/t^2)dt,

=1/2ln|(t-1)/(t+1)|+1/t,

=1/2ln|(cosy-1)/(cosy+1)|+1/cosy,

=1/2ln|(1-secy)/(1+secy)|+secy.

Since, tany=e^x rArr secy=sqrt(1+tan^2y)=sqrt(1+e^(2x)), we get,

I=1/2ln|(1-sqrt(1+e^(2x)))/(1+sqrt(1+e^(2x)))|+sqrt(1+e^(2x))+C.

Enjoy Maths.!