How do you find the antiderivative of #((2x)e^(3x))#? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer Ratnaker Mehta Aug 3, 2016 #1/9*(3x-1)*e^(3x)+C#. Explanation: Let, #I=int2xe^(3x)dx rArr I=2intxe^(3x)dx#. To find #I#, we will use the following Rule of Integration by Parts : #intuvdx=uintvdx-int{(du)/dxintvdx}dx#. We take, #u=x, so, (du)/dx=1, &, v=e^(3x), so, intvdx=1/3e^(3x)#. So, #I=x*1/3e^(3x)-int{1*1/3e^(3x)}dx# #=x/3e^(3x)-1/3inte^(3x)dx# #=x/3e^(3x)-1/3*1/3e^(3x)# #:. I = 1/9*(3x-1)*e^(3x)+C#. Answer link Related questions How do you evaluate the integral #inte^(4x) dx#? How do you evaluate the integral #inte^(-x) dx#? How do you evaluate the integral #int3^(x) dx#? How do you evaluate the integral #int3e^(x)-5e^(2x) dx#? How do you evaluate the integral #int10^(-x) dx#? What is the integral of #e^(x^3)#? What is the integral of #e^(0.5x)#? What is the integral of #e^(2x)#? What is the integral of #e^(7x)#? What is the integral of #2e^(2x)#? See all questions in Integrals of Exponential Functions Impact of this question 3832 views around the world You can reuse this answer Creative Commons License