How do you find the antiderivative of #(e^-2x)^2#? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer Ratnaker Mehta Feb 3, 2017 #int(e^-2x)^2dx=inte^-4x^2dx=e^-4intx^2dx=e^-4(x^(2+1)/(2+1))# #=(e^-4)/3x^3+C, or, x^3/(3e^4) +C.# Answer link Related questions How do you evaluate the integral #inte^(4x) dx#? How do you evaluate the integral #inte^(-x) dx#? How do you evaluate the integral #int3^(x) dx#? How do you evaluate the integral #int3e^(x)-5e^(2x) dx#? How do you evaluate the integral #int10^(-x) dx#? What is the integral of #e^(x^3)#? What is the integral of #e^(0.5x)#? What is the integral of #e^(2x)#? What is the integral of #e^(7x)#? What is the integral of #2e^(2x)#? See all questions in Integrals of Exponential Functions Impact of this question 1462 views around the world You can reuse this answer Creative Commons License