How do you find the antiderivative of e^(2x)/sqrt(1-e^x)?
1 Answer
Sep 9, 2016
Explanation:
We have:
I=inte^(2x)/sqrt(1-e^x)dx
Let
I=int(e^x(e^x)dx)/sqrt(1-e^x)=intu/sqrt(1-u)du
Letting
I=-int(1-v)/sqrtvdv=int(v^(1/2)-v^(-1/2))dv
Integrating using the
I=v^(3/2)/(3/2)-v^(1/2)/(1/2)=2/3v^(3/2)-2v^(1/2)=(2sqrtv(v-3))/3
Since
I=(2sqrt(1-e^x)(1-e^x-3))/3=(-2(e^x+2)sqrt(1-e^x))/3+C