How do you find the antiderivative of e2x√1−ex?
1 Answer
Sep 9, 2016
Explanation:
We have:
I=∫e2x√1−exdx
Let
I=∫ex(ex)dx√1−ex=∫u√1−udu
Letting
I=−∫1−v√vdv=∫(v12−v−12)dv
Integrating using the
I=v3232−v1212=23v32−2v12=2√v(v−3)3
Since
I=2√1−ex(1−ex−3)3=−2(ex+2)√1−ex3+C