How do you find the antiderivative of e^(2x)/sqrt(1-e^x)?

1 Answer
Sep 9, 2016

(-2(e^x+2)sqrt(1-e^x))/3+C

Explanation:

We have:

I=inte^(2x)/sqrt(1-e^x)dx

Let u=e^x. This implies that du=e^xdx. We can write e^(2x) as e^x(e^x):

I=int(e^x(e^x)dx)/sqrt(1-e^x)=intu/sqrt(1-u)du

Letting v=1-u, such that dv=-du, and manipulating to show that u=1-v:

I=-int(1-v)/sqrtvdv=int(v^(1/2)-v^(-1/2))dv

Integrating using the intv^ndv=v^(n+1)/(n+1),n!=-1 rule:

I=v^(3/2)/(3/2)-v^(1/2)/(1/2)=2/3v^(3/2)-2v^(1/2)=(2sqrtv(v-3))/3

Since v=1-u, and u=e^x, so v=1-e^x:

I=(2sqrt(1-e^x)(1-e^x-3))/3=(-2(e^x+2)sqrt(1-e^x))/3+C