Well, This can't be done simply.
We have to Perform Integration By Parts.
The Rule States That,
#int uvdx = uintvdx - int (u'intv)dx#
Where #u# and #v# are functions of #x# and #u' = d/dx(u)#.
Now, We have,
#intx^2e^(2x)dx#
#= x^2inte^2x - int(d/dx(x^2)inte^(2x))dx#
#= 1/2x^2e^(2x) - int(cancel(2)x xx 1/cancel(2)e^(2x))dx#
#= 1/2x^2e^(2x) - int xe^(2x) dx#......................(i)
We have to Integrate By Parts Once More.
So, From (i),
#1/2x^2e^(2x) - x inte^(2x) + int(d/dx(x)inte^(2x))dx#
#= 1/2x^2e^(2x) - 1/2xe^(2x) + 1/2inte^(2x)dx#
#= 1/2x^2e^(2x) - 1/2xe^(2x) + 1/4e^(2x) + C# [Yeah, Don't EVER Forget this guy here#rarr# #C#]
#= 1/2e^(2x)(x^2 - x + 1/2) + C#
Hope this helps.