How do you find the area inner loop of #r=4-6sintheta#?
1 Answer
Explanation:
First we have to find the values of
#4-6sintheta=0#
#sintheta=2/3#
Then
#theta=sin^-1(2/3)#
This is the angle in Quadrant
So, we want the area from
The area of a polar curve
#A=1/2int_alpha^beta(4-6sintheta)^2d theta#
Also note that
#=2int_alpha^beta(2-3sintheta)^2d theta#
#=2int_alpha^beta(4-12sintheta+9sin^2theta)d theta#
Use the simplification
#=2int_alpha^beta(4-12sintheta+9/2-9/2cos2theta)d theta#
#=int_alpha^beta(13-24sintheta-9cos2theta)d theta#
Integrate term-by-term. Depending on how comfortable you are with integration, you may want to use the substitution
#=[13theta+24costheta-9/2sin2theta]_alpha^beta#
Using
#=[13theta+24costheta-9sinthetacostheta]_alpha^beta#
Recall that
#=13beta+24cosbeta-9sinbetacosbeta-13alpha-24cosalpha+9sinalphacosalpha#
#=13(beta-alpha)+24(-sqrt5/3)-9(2/3)(-sqrt5/3)-24(5/sqrt3)+9(2/3)(sqrt5/3)#
#=13(pi-sin^-1(2/3)-sin^-1(2/3))-16sqrt5+4sqrt5#
#=13pi-26sin^-1(2/3)-12sqrt5#