How do you find the area of the surface generated by rotating the curve about the y-axis y=cx+d, a<=x<=by=cx+d,a≤x≤b?
2 Answers
The surface area for
S = pi(b^2 - a^2)sqrt(c^2 + 1)S=π(b2−a2)√c2+1 ," "" "c > 0 c>0
(Note: If
If
y_(min) = ca + dymin=ca+d
y_(max) = cb + d (If
c < 0 , then the revolution around they axis would produce the same surface area by symmetry ofy = |c|x + d compared toy = -|c|x + d . The value ofd does not matter, since the rotation is around they axis, and the shape will be the same regardless of the y-intercept.)
The surface area for a revolution around the
S = 2 pi int_(ca + d)^(cb + d) f(y) sqrt(1 + ((dx)/(dy))^2)dy
Evaluating the derivative, we get:
((dx)/(dy))^2 = (d/(dy)[(y - d)/c])^2
= 1/c^2
Therefore:
S = 2 pi int_(ca + d)^(cb + d) (y - d)/c sqrt(1 + 1/c^2)dy
= (2 pi sqrt(1 + 1/c^2))/c int_(ca + d)^(cb + d) (y - d) dy
= (2 pi sqrt(1 + 1/c^2))/c |[y^2/2 - dcdoty]|_(ca + d)^(cb + d)
= (2 pi sqrt(1 + 1/c^2))/c [(cb + d)^2/2 - dcdot(cb + d)] - [(ca + d)^2/2 - dcdot(ca + d)]
= (2 pi sqrt(1 + 1/c^2))/c [(cb + d)^2/2 - dcdot(cb + d) - (ca + d)^2/2 + dcdot(ca + d)]
= (2 pi sqrt(1 + 1/c^2))/c [(b^2c^2 + 2bcd + d^2)/2 - bcd - d^2 - (a^2c^2 + 2acd + d^2)/2 + acd + d^2]
= (2 pi sqrt(1 + 1/c^2))/c [(b^2c^2 + 2bcd + cancel(d^2) - a^2c^2 - 2acd - cancel(d^2))/2 - bcd - cancel(d^2) + acd + cancel(d^2)]
= (2 pi sqrt(1 + 1/c^2))/cancel(c) [(cancel(c)(b^2c + 2d(b - a) - a^2c))/2 + cancel(c)d(a - b)]
= 2 pi sqrt(1 + 1/c^2) [(c(b^2 - a^2) + 2d(b - a))/2 + (2d(a - b))/2]
= 2 pi sqrt(1 + 1/c^2) [(c(b^2 - a^2))/2]
= 2 pi sqrt(c^2 + 1) cdot (b^2 - a^2)/2
= bb(color(blue)(pi (b^2 - a^2)sqrt(c^2 + 1)))
For example, let's rotate
S stackrel(?" ")(=) pi (2^2 - 0^2)sqrt(2^2 + 1)
stackrel(?" ")(=) 4sqrt5pi
In Wolfram Alpha, we get that it works%2F2+from+3+to+7+around+y+axis)!
A = pi(b^2-a^2)sqrt(1+c^2)
Explanation:
The function:
y=cx+d
represents a straight line. Rotating a straight line about
A= pi(R+r)sqrt((R-r)^2+h^2)
Where:
R is the lower radius
r is the upper radius
h is the vertical height
When:
x=a => y=ca+d
x=b => y=cb+d
Thus we have:
r=a, R=b
h=(cb+d)-(ca+d) = cb-ca
Thus, the SA, is:
A = pi(a+b)sqrt((b-a)^2+(cb-ca)^2)
\ \ \ = pi(a+b)sqrt((b-a)^2+c^2(b-a)^2)
\ \ \ = pi(a+b)sqrt((b-a)^2(1+c^2))
\ \ \ = pi(a+b)(b-a)sqrt(1+c^2)
\ \ \ = pi(b^2-a^2)sqrt(1+c^2)