How do you find the area of the surface generated by rotating the curve about the y-axis x^(2/3)+y^(2/3)=1x23+y23=1 for the first quadrant?

1 Answer
Apr 23, 2018

(6 pi)/56π5

Explanation:

enter image source here

We can param this:

Let x = cos^3 tx=cos3t and y = sin^3 ty=sin3t so that we do indeed have x^(2/3)+y^(2/3)=1x23+y23=1

Then arc lenth along the curve in Q1 is:

ds = dot s \ dt = sqrt(dot x^2 + dot y ^2) \ dt

= sqrt((-3 cos^2 t sin t)^2 + (3 sin ^2 t cos t) ^2) \ dt

= 3 cos t sin t \ dt

The surface area of the revolution around the y-axis is:

dS = 2 pi x ds

= 6 pi \ cos^4 t \ sin t \ dt

And:

S = 6 pi \ int_(t = 0)^(pi/2) \ dt qquad cos^4 t \ sin t

= 6 pi (- 1/5cos^5 t)_(t = 0)^(pi/2) = (6 pi)/5