How do you find the area of the surface generated by rotating the curve about the y-axis y=1/3(x^2+2)^(3/2), 1<=x<=2?

1 Answer
Apr 18, 2017

The surface area of a curve y rotated around the x-axis on alt=xlt=b is given by:

S=2piint_a^bysqrt(1+(y')^2)dx

Where y=1/3(x^2+2)^(3/2) we see that y'=1/3(3/2(x^2+2)^(1/2))(2x)=xsqrt(x^2+2).

Then the surface area is:

S=2piint_1^2 1/3(x^2+2)^(3/2)sqrt(1+(xsqrt(x^2+2))^2)dx

S=(2pi)/3int_1^2(x^2+2)^(3/2)sqrt(1+x^2(x^2+2))dx

Note that sqrt(1+x^2(x^2+2))=sqrt(x^2+2x^2+1)=sqrt((x^2+1)^2)=x^2+1:

S=(2pi)/3int_1^2(x^2+2)^(3/2)(x^2+1)dxapprox69.9055