How do you find the area of the surface generated by rotating the curve about the y-axis x=t+1, y=1/2t^2+t, 0<=t<=2?

1 Answer
Jun 25, 2018

= (2 pi)/3( 10 sqrt(10) - 2 sqrt(2)) " sq units"

Explanation:

bbr(t) = << t+1, 1/2 t(t+2) >>, qquad 0<=t<=2

ds = sqrt(dot x^2 + dot y^2) \ dt

dS = ds * 2 pi x = 2 pi (t+1) sqrt((1)^2 + (t+1)^2) \ dt

= 2 pi (t+1) sqrt(t^2 + 2t + 2) \ dt

S =2 pi int_0^2 dt qquad (t+1) sqrt(t^2 + 2t + 2)

=2 pi int_0^2 dt qquad d/dt ( 1/3(t^2 + 2t + 2)^(3/2))

=(2 pi)/3 [ (t^2 + 2t + 2)^(3/2)]_0^2

=(2 pi)/3 ( 10^(3/2) - 2^(3/2))

= (2 pi)/3( 10 sqrt(10) - 2 sqrt(2)) approx 60.3 " sq units"