How do you find the area of the surface generated by rotating the curve about the y-axis x=t^2, y=1/3t^3, 0<=t<=3x=t2,y=13t3,0t3?

1 Answer
Jul 30, 2018

For infinitesimal arc length, dsds:

ds = sqrt(dx^2 + dy^2 )ds=dx2+dy2

  • {(x = t^2, dx = 2 t\ dt),(y = 1/3 t^3, dy = t^2\ dt):}

:. ds = sqrt(4t^2 + t^4 ) \ dt = t sqrt(4 + t^2 ) \ dt

Spinning round the y-axis, creating infinitesimal surface area dS, where:

  • dS = 2 pi \ x \ ds

= 2 pi \ t^3 \ sqrt(4 + t^2 ) \ dt

:. S =2 pi int_0^3 \ dt qquad t^3 sqrt(4 + t^2 )

= (2 pi)/15 (64 + 247 sqrt13)

I have skipped the mechanical integration steps. you can start with a sub:

  • u = 4 + t^2 qquad du = 2 t \ dt

:. S =2 pi int_4^13 \ (du)/(2t) qquad t^3 \ sqrtu

= pi int_4^13 \ du qquad (u - 4) \ sqrtu

= pi int_4^13 \ du qquad u^(3/2) - 4u^(1/2)

Which is trivial but protracted