How do you find the average value of #f(x)=cosx# as x varies between #[0, pi/2]#?
1 Answer
Sep 5, 2016
Explanation:
The average value of the function
#"average value"=1/(b-a)int_a^bf(x)dx#
Here, this gives us an average value of:
#1/(pi/2-0)int_0^(pi/2)cos(x)dx#
Integrating
#=1/(pi/2)[sin(x)]_0^(pi/2)#
#=2/pi[sin(pi/2)-sin(0)]#
#=2/pi[1-0]#
#=2/pi#