How do you find the average value of #sinx# as x varies between #[0,pi]#?
1 Answer
Nov 26, 2016
Explanation:
The average value of a function
#1/(b-a)int_1^bf(x)dx#
Here, this gives us an average value of
#1/(pi-0)int_0^pisin(x)dx#
The antiderivative of
#=1/pi[-cos(x)]_0^pi#
#=1/pi(-cos(pi)-(-cos(0)))#
#=1/pi(-(-1)-(-1))#
#=2/pi#