How do you find the average value of the function for #f(x)=sinxcosx, 0<=x<=pi/2#?
1 Answer
The average value is
Explanation:
The average value of a function
#A = 1/(b - a)int_a^b F(x)#
Where
#A = 1/(pi/2 - 0) int_0^(pi/2) sinxcosx dx#
#A = 2/piint_0^(pi/2) sinxcosxdx#
The trick here is to realize that
#A = 2/piint_0^(pi/2) 1/2sin2xdx#
Now let
#A = 2/piint_0^(pi) 1/4sinu du#
#A = 1/4(2/pi)int_0^(pi)sinudu#
#A = 1/(2pi)int_0^(pi)sinudu#
#A = 1/(2pi)[-cosu]_0^(pi)#
#A = 1/(2pi)[-cos2x]_0^(pi/2)#
#A = 1/(2pi)(-cospi - (-cos0))#
#A = 1/(2pi)(1 + 1)#
#A = 1/pi#
Hopefully this helps!