How do you find the center and radius of a circle using a polynomial x^2 + y^2 - 6x + 10y + 9 = 0x2+y26x+10y+9=0?

1 Answer
May 24, 2018

Center is at (3 , -5)(3,5) and radius is r=5 r=5 unit.

Explanation:

x^2+y^2-6 x +10 y +9 =0x2+y26x+10y+9=0 or

(x^2 -6 x) +(y^2+10 y )= -9 (x26x)+(y2+10y)=9 or

(x^2 -6 x +9) +(y^2+10 y +25 )=34 -9 (x26x+9)+(y2+10y+25)=349 or

(x-3)^2 +(y +5)^2=5^2 (x3)2+(y+5)2=52. The center-radius form of the circle

equation is (x – h)^2 + (y – k)^2 = r^2, with the center being at

the point (h, k) and the radius being r. Center is at

(3 , -5) and radius is r=5 unit.

graph{x^2+y^2-6 x+10 y+9=0 [-20, 20, -10, 10]} [Ans]