How do you find the center and radius of the circle given x^2+y^2+2x-10=0?

1 Answer
Mar 31, 2018

centre C (-1,0) and r=sqrt11

Explanation:

The general equation of the circle:

x^2+y^2+2gx+2fy+c=0.......to(I),

whose centre C(-g,-f) and radius r=sqrt(g^2+f^2-c)

We have,

x^2+y^2+2x-10=0

Comparing with (I), we get

2g=2,2f=0,c=-10

i.e. g=1,f=0,c=-10

So,

centre C(-1,0) and r=sqrt((1)^2+(0)^2-(-10))=sqrt11