How do you find the complex conjugate of #-0.5 + 0.25i#? Precalculus Complex Numbers in Trigonometric Form Division of Complex Numbers 1 Answer bp · mason m Nov 28, 2015 Complex conjugate of #-0.5 +0.25i# would be #-0.5 -0.25 i#. Explanation: Complex conjugate of #-0.5 +0.25i# would be obtained by changing the sign of the imaginary part. Real part is left unchanged #= -0.5 -0.25 i#. Answer link Related questions How do I graphically divide complex numbers? How do I divide complex numbers in standard form? How do I find the quotient of two complex numbers in polar form? How do I find the quotient #(-5+i)/(-7+i)#? How do I find the quotient of two complex numbers in standard form? What is the complex conjugate of a complex number? How do I find the complex conjugate of #12/(5i)#? How do I rationalize the denominator of a complex quotient? How do I divide #6(cos^circ 60+i\ sin60^circ)# by #3(cos^circ 90+i\ sin90^circ)#? How do you write #(-2i) / (4-2i)# in the "a+bi" form? See all questions in Division of Complex Numbers Impact of this question 4605 views around the world You can reuse this answer Creative Commons License