How do you find the coordinates of the center for the given ellipse 4x^2+16x+352+16y^2+160y=0?

1 Answer
Dec 23, 2015

(-2,-5)

Explanation:

Rearrange:

(4x^2+16x)+(16y^2+160y)=-352

Complete the square after factoring out the coefficient on the squared terms.

color(red)4(x^2+4x+color(red)4)+color(blue)16(y^2+10y+color(blue)25)=-352+color(red)16+color(blue)400

4(x+2)^2+16(y+5)^2=64

(x+2)^2/16+(y+5)^2/4=1

This is in the standard form of an ellipse:

(x-h)^2/a+(y-k)^2/b=1

Where the ellipse has a center at (h,k).

The trick to finding the center is remembering to switch the sign of whatever's inside the parentheses:

(x+2)^2rarrx"-coordinate " color(indigo)(-2)
(y+5)^2rarry"-coordinate "color(indigo)(-5)

(-2,-5)

graph{(4x^2+16x)+(16y^2+160y)=-352 [-11.25, 8.75, -8.04, 1.96]}