How do you find the definite integral of #int 1/(x+2)# from [-1,1]? Calculus Introduction to Integration Integrals of Rational Functions 1 Answer Mia Dec 4, 2016 #ln3# Explanation: Let #u=x+2# #" "# then #" "du=dx# #" "# #int1/(x+2) dx# #" "# #=int (du)/u# #" "# #=lnu + C# #" "# #=lnabs(x+2) + C# #" "# #" "# #int_-1^1 1/(x+2) dx# #" "# #=lnabs(1+2) - lnabs(-1+2)# #" "# #=lnabs3-lnabs1# #" "# #=ln3-ln1# #" "# #=ln3-0# #" "# #=ln3# Answer link Related questions How do you integrate #(x+1)/(x^2+2x+1)#? How do you integrate #x/(1+x^4)#? How do you integrate #dx / (2sqrt(x) + 2x#? What is the integration of #1/x#? How do you integrate #(1+x)/(1-x)#? How do you integrate #(2x^3-3x^2+x+1)/(-2x+1)#? How do you find integral of #((secxtanx)/(secx-1))dx#? How do you integrate #(6x^5 -2x^4 + 3x^3 + x^2 - x-2)/x^3#? How do you integrate #((4x^2-1)^2)/x^3dx #? How do you integrate #(x+3) / sqrt(x) dx#? See all questions in Integrals of Rational Functions Impact of this question 1424 views around the world You can reuse this answer Creative Commons License