How do you find the derivative of (3x(sin4x)2)12?

1 Answer
Mar 27, 2018

See solution below.

Explanation:

ddx[(3x(sin4x)2)12]

This one is a bit of a hassle but with proper substitution it's possible. Think of this expression as multiple functions.
(3x(sin4x)2)12 is a function of f where f(x)=x12 and x=3x(sin4x)2.
Always remember to multiply the derivative of the inner function by the derivative of the outer function. It's a bit hard for me to explain so please follow the process below.

ddx[(3x(sin4x)2)12]

Start by using the substitution: u=3x(sin4x)2

ddx[(3x(sin4x)2)12]=ddu[u12]×ddx[3x(sin4x)2]

ddx[3x(sin4x)2]=ddx[3x]ddx[(sin4x)2]

v=sin4x

ddx[(sin4x)2]=ddv[v2]ddx[sin4x]

w=4x

ddx[sin4x]=ddw[sinw]ddx[4x]

Now putting all this together we get

ddu[u12]×(ddx[3x](ddv[v2](ddw[sinw]ddx[4x])))

evaluating this expression we get:

12u12×(3(2v(cosw×4)))

Substituting all the values we get:

12(3x(sin4x)2)12×(3(2(sin4x)(cos(4x)×4)))

This can be simplified to:

38sin4xcos4x2×(3xsin2(4x))