How do you find the derivative of #arcsin(3x)#?

1 Answer
Oct 3, 2016

Derivative of #arcsin(3x)# is #3/sqrt(1-9x^2)#

Explanation:

Let us first find the derivative of #arcsinx# and let #y=arcsinx#,

Then #x=siny# and #(dx)/(dy)=cosy=sqrt(1-sin^2y)=sqrt(1-x^2)#

or #(dy)/(dx)=1/sqrt(1-x^2)# i.e. derivative of #arcsinx# is #1/sqrt(1-x^2)#

Now using chain rule deivative of #arcsin(3x)# is

#1/sqrt(1-(3x)^2)xx3=3/sqrt(1-9x^2)#