How do you find the derivative of cos^2(2x)cos2(2x)?

1 Answer
Jun 25, 2018

d/dxcos^2 2x=-2sin4xddxcos22x=2sin4x

Explanation:

We use the chain rule for functions:

d/dx[f(x)]^n=n[f(x)]^(n-1)f^'(x)

So

d/dxcos^2 2x=2cos^(2-1)2xd/dxcos2x=-4sin2xcos2x

We can rewrite this in a neater form using

2sinAcosA=sin2A

-4sin2xcos2x=-2*2sin2xcos2x=-2sin4x