How do you find the derivative of cos2(3x)?

1 Answer
Oct 17, 2016

ddxcos2(3x)=6sin(3x)cos(3x)

Explanation:

Using the chain rule, we can treat cos(3x) as a variable and differentiate cos2(3x) in relation to cos(3x).

Chain rule: dydx=dydududx

Let u=cos(3x), then dudx=3sin(3x)

dydu=dduu2since cos2(3x)=(cos(3x))2=u2

=2u=2cos(3x)

dydx=2cos(3x)3sin(3x)=6sin(3x)cos(3x)