How do you find the derivative of (cos^2(x)sin^2(x))?

1 Answer
Jun 13, 2018

1/2sin4x

Explanation:

"differentiate using the "color(blue)"product/chain rules"

"given "y=f(x)g(x)" then"

dy/dx=f(x)g'(x)+g(x)f'(x)larrcolor(blue)"product rule"

f(x)=cos^2xrArrf'(x)=2cosx(-sinx)

color(white)(xxxxxxxxxxxxxxx)=-2sinxcosx

g(x)=sin^2xrArrg'(x)=2sinx(cosx)

color(white)(xxxxxxxxxxxxxxx)=2sinxcosx

d/dx(cos^2xsin^2x)

=cos^2x(2sinxcosx)+sin^2x(-2sinxcosx)

=(2sinxcosx)(cos^2x-sin^2x)

=sin2xcos2x=1/2sin4x