How do you find the derivative of cos^2x sinxcos2xsinx?

2 Answers
Nov 27, 2016

"the derivative of y="cos^2 x sin x" is "y^'=-2cos x+3cos^3 x

Explanation:

a=cos ^2x

b=sin x

y=cos^2 x sin x

y=a*b

y^'=a^'*b+b^'*a

a^'=-2cos x*sin x

b^'=cos x

y^'=-2cos x*sin x* sin x+cos x*cos^2 x

y^'=-2cos x*sin^2 x+cos^3 x

sin^2 x=1-cos^2 x

y^'=-2cos x(1-cos^2 x)+cos^3 x

y^'=-2cos x+2cos^3 x+cos^3 x

y^'=-2cos x+3cos^3 x

Nov 27, 2016

I would replace cos^2x by 1-sin^2x

Explanation:

cos^2xsinx = (1-sin^2x)sinx = sinx-sin^3x

The derivative is cosx-3sin^2xcosx.

There are other ways to write the derivative.