How do you find the derivative of cos^3(2x)cos3(2x)?
1 Answer
Oct 17, 2015
Use the chain rule twice.
Explanation:
First recall that
So,
= 3cos^2(2x) (-sin(2x)) d/dx(2x)=3cos2(2x)(−sin(2x))ddx(2x)
= 3cos^2(2x) (-sin(2x)) (2)=3cos2(2x)(−sin(2x))(2)
= -6cos^2(2x) sin(2x)=−6cos2(2x)sin(2x)