How do you find the derivative of cos^6(2x+5)cos6(2x+5)?

1 Answer

Applying chain rule for differentiation as follows

\frac{d}{dx}\cos^6(2x+5)ddxcos6(2x+5)

=\frac{d}{dx}(\cos(2x+5))^6=ddx(cos(2x+5))6

=6(\cos(2x+5))^5\frac{d}{dx}(\cos(2x+5))=6(cos(2x+5))5ddx(cos(2x+5))

=6\cos^5(2x+5)(-\sin(2x+5))\frac{d}{dx}(2x+5)=6cos5(2x+5)(sin(2x+5))ddx(2x+5)

=-6\sin(2x+5)\cos^5(2x+5)(2)=6sin(2x+5)cos5(2x+5)(2)

=-12\sin(2x+5)\cos^5(2x+5)=12sin(2x+5)cos5(2x+5)