How do you find the derivative of cosxtanx?

1 Answer
Jul 16, 2017

ddx(cosxtanx)=(sec2xlncosxtan2x)cosxtanx

Explanation:

First define y=cosxtanx

Then, by definition, lny=tanxlncosx

And 1y(dydx)=sec2xlncosx(sinxcosx)tanx

dydx=y(sec2xlncosxtan2x)
=(sec2xlncosxtan2x)cosxtanx