How do you find the derivative of (cosx)^x? Calculus Differentiating Trigonometric Functions Derivative Rules for y=cos(x) and y=tan(x) 1 Answer Sasha P. Oct 5, 2015 y'=(cosx)^x(ln(cosx)-xtgx) Explanation: y=(cosx)^x lny=ln(cosx)^x lny=xln(cosx) d/dx(lny)=d/dx(xln(cosx)) 1/y*y'=ln(cosx)+x*1/cosx*(-sinx) (y')/y=ln(cosx)-xtgx y'=y*(ln(cosx)-xtgx) y'=(cosx)^x(ln(cosx)-xtgx) Answer link Related questions What is the derivative of y=cos(x) ? What is the derivative of y=tan(x) ? How do you find the 108th derivative of y=cos(x) ? How do you find the derivative of y=cos(x) from first principle? How do you find the derivative of y=cos(x^2) ? How do you find the derivative of y=e^x cos(x) ? How do you find the derivative of y=x^cos(x)? How do you find the second derivative of y=cos(x^2) ? How do you find the 50th derivative of y=cos(x) ? How do you find the derivative of y=cos(x^2) ? See all questions in Derivative Rules for y=cos(x) and y=tan(x) Impact of this question 1618 views around the world You can reuse this answer Creative Commons License