How do you find the derivative of #(cosx)^x#? Calculus Differentiating Trigonometric Functions Derivative Rules for y=cos(x) and y=tan(x) 1 Answer Sasha P. Oct 5, 2015 #y'=(cosx)^x(ln(cosx)-xtgx)# Explanation: #y=(cosx)^x# #lny=ln(cosx)^x# #lny=xln(cosx)# #d/dx(lny)=d/dx(xln(cosx))# #1/y*y'=ln(cosx)+x*1/cosx*(-sinx)# #(y')/y=ln(cosx)-xtgx# #y'=y*(ln(cosx)-xtgx)# #y'=(cosx)^x(ln(cosx)-xtgx)# Answer link Related questions What is the derivative of #y=cos(x)# ? What is the derivative of #y=tan(x)# ? How do you find the 108th derivative of #y=cos(x)# ? How do you find the derivative of #y=cos(x)# from first principle? How do you find the derivative of #y=cos(x^2)# ? How do you find the derivative of #y=e^x cos(x)# ? How do you find the derivative of #y=x^cos(x)#? How do you find the second derivative of #y=cos(x^2)# ? How do you find the 50th derivative of #y=cos(x)# ? How do you find the derivative of #y=cos(x^2)# ? See all questions in Derivative Rules for y=cos(x) and y=tan(x) Impact of this question 1452 views around the world You can reuse this answer Creative Commons License