How do you find the derivative of (e^(2x)) * (cos 2x)(e2x)(cos2x)?

1 Answer
Dec 13, 2015

2e^(2x)(cos(2x)-sin(2x))2e2x(cos(2x)sin(2x))

Explanation:

Use the product rule:

f'(x)=cos(2x)d/dx[e^(2x)]+e^(2x)d/dx[cos(2x)]

Find each derivative independently. They both require use of the chain rule.

d/dx[e^(2x)]=e^(2x)d/dx[2x]=2e^(2x)

d/dx[cos(2x)]=-sin(2x)d/dx[2x]=-2sin(2x)

Plug these back in.

f'(x)=2e^(2x)cos(2x)-2e^(2x)sin(2x)

f'(x)=2e^(2x)(cos(2x)-sin(2x))