How do you find the derivative of f(x) = 4x + piTan(x) f(x)=4x+πtan(x)?

1 Answer
Dec 15, 2017

4+π(1+tan^2x)

Explanation:

f'(x)=(4x+πtan(x))' = 4(x)'+π(tanx)' = 4+π(1+tan^2x)

  • because

(tanx)'=(sinx/cosx)'=((sinx)'cosx-sinx(cosx)')/cos^2x =

(cos^2x+sin^2x)/cos^2x = 1/cos^2x = 1+tan^2x

& sin^2x+cos^2x=1 <=> sin^2x/cos^2x+1=1/cos^2x <=> 1 + tan^2x = 1/cos^2x