d/dx(tan^-1(cos(3x)))ddx(tan−1(cos(3x)))
Step 1. Use the chain rule
d/dx(tan^-1(cos(3x)))=(d(tan^-1(u)))/(du)(du)/(dx)ddx(tan−1(cos(3x)))=d(tan−1(u))dududx,
where u=cos(3x)u=cos(3x) and d/(du)(tan^-1(u))=1/(1+u^2)ddu(tan−1(u))=11+u2
=(d/dx(cos(3x)))/(1+cos^2(3x))=ddx(cos(3x))1+cos2(3x)
Step 2. Using the chain rule again,
d/dx(cos(3x))=(d(cos(u)))/(du)(du)/(dx)ddx(cos(3x))=d(cos(u))dududx,
where u=3xu=3x and d/(du)(cos(u))-sin(u)ddu(cos(u))−sin(u), gives
=(-d/dx(3x)sin(3x) )/(1+cos^2(3x))=−ddx(3x)sin(3x)1+cos2(3x)
Step 3. Factor out constants
=-3(sin(3x) )/(1+cos^2(3x))d/dx(x)=−3sin(3x)1+cos2(3x)ddx(x)
ANSWER: =-(3sin(3x) )/(1+cos^2(3x))=−3sin(3x)1+cos2(3x)