How do you find the derivative of f(x)=sqrt(cos(e^(x^4sin(x)))f(x)=cos(ex4sin(x))?

1 Answer
Apr 14, 2016

f'(x)==1/(2sqrt(cos(e^(x^4sinx))) )xx-sin(e^(x^4sinx))xx e^(x^4sinx)xx(x^4cosx+4x^3sinx)

Explanation:

f(x)=sqrtx, g(x)=cos x, h(x)=e^x, r(x)=x^4sinx

f(g(h(r(x))))=sqrt(cos(e^(x^4sinx))

[f(g(h(r(x))))]'=f'(g(h(r(x))))*g'(h(r(x))) h'(r(x))*r'(x)

=1/(2sqrt(cos(e^(x^4sinx))) )xx-sin(e^(x^4sinx))xx e^(x^4sinx)xx(x^4cosx+4x^3sinx)