How do you find the derivative of #f(x)=sqrt(cos(e^(x^4sin(x)))#? Calculus Differentiating Trigonometric Functions Derivative Rules for y=cos(x) and y=tan(x) 1 Answer Bdub Apr 14, 2016 #f'(x)==1/(2sqrt(cos(e^(x^4sinx))) )xx-sin(e^(x^4sinx))xx e^(x^4sinx)xx(x^4cosx+4x^3sinx)# Explanation: #f(x)=sqrtx, g(x)=cos x, h(x)=e^x, r(x)=x^4sinx# #f(g(h(r(x))))=sqrt(cos(e^(x^4sinx))# #[f(g(h(r(x))))]'=f'(g(h(r(x))))*g'(h(r(x))) h'(r(x))*r'(x)# #=1/(2sqrt(cos(e^(x^4sinx))) )xx-sin(e^(x^4sinx))xx e^(x^4sinx)xx(x^4cosx+4x^3sinx)# Answer link Related questions What is the derivative of #y=cos(x)# ? What is the derivative of #y=tan(x)# ? How do you find the 108th derivative of #y=cos(x)# ? How do you find the derivative of #y=cos(x)# from first principle? How do you find the derivative of #y=cos(x^2)# ? How do you find the derivative of #y=e^x cos(x)# ? How do you find the derivative of #y=x^cos(x)#? How do you find the second derivative of #y=cos(x^2)# ? How do you find the 50th derivative of #y=cos(x)# ? How do you find the derivative of #y=cos(x^2)# ? See all questions in Derivative Rules for y=cos(x) and y=tan(x) Impact of this question 2636 views around the world You can reuse this answer Creative Commons License