Here,
y=arctan(x-sqrt(1+x^2))
We take , x=cottheta , where, theta in (0,pi)
=>theta=arc cot x, x in RR and theta/2 in (0.pi/2)
=>y=arctan(cottheta-sqrt(1+cot^2theta))
=>y=arctan(cottheta-csctheta)...toapply(1)
=>y=arctan[-(csctheta-cottheta)]
=>y=-arctan(csctheta-cottheta)...toApply(6)
=>y=-arctan(1/sintheta-costheta/sintheta)
=>y=-arctan((1-costheta)/sintheta)...toApply(2) and (3)
=>y=-arctan((2sin^2(theta/2))/(2sin(theta/2)cos(theta/2)))
=>y=-arctan(sin(theta/2)/cos(theta/2))
=>y=-arctan(tan(theta/2)) ,where, theta/2 in(0,pi/2)
=>y=-theta/2...to Apply(4)
Subst, back , theta=arc cot theta
y=-1/2arc cot theta
=>(dy)/(dx)=-1/2(-1/(1+x^2))...toApply(5)
=>(dy)/(dx)=1/(2(1+x^2))
Note: (Formulas)
(1)1+cot^2theta=csc^2theta
(2)1-costheta=2sin^2(theta/2)
(3)sintheta=2sin(theta/2)cos(theta/2)
(4)arctan(tanx)=x
(5)d/(dx)(arc cot x)=-1/(1+x^2)
(6)arctan(-x)=-arctanx