How do you find the derivative of Inverse trig function y= arctan(x - sqrt(1+x^2))?

1 Answer
Jun 9, 2018

=>(dy)/(dx)=1/(2(1+x^2))

Explanation:

Here,

y=arctan(x-sqrt(1+x^2))

We take , x=cottheta , where, theta in (0,pi)

=>theta=arc cot x, x in RR and theta/2 in (0.pi/2)

=>y=arctan(cottheta-sqrt(1+cot^2theta))

=>y=arctan(cottheta-csctheta)...toapply(1)

=>y=arctan[-(csctheta-cottheta)]

=>y=-arctan(csctheta-cottheta)...toApply(6)

=>y=-arctan(1/sintheta-costheta/sintheta)

=>y=-arctan((1-costheta)/sintheta)...toApply(2) and (3)

=>y=-arctan((2sin^2(theta/2))/(2sin(theta/2)cos(theta/2)))

=>y=-arctan(sin(theta/2)/cos(theta/2))

=>y=-arctan(tan(theta/2)) ,where, theta/2 in(0,pi/2)

=>y=-theta/2...to Apply(4)

Subst, back , theta=arc cot theta

y=-1/2arc cot theta

=>(dy)/(dx)=-1/2(-1/(1+x^2))...toApply(5)

=>(dy)/(dx)=1/(2(1+x^2))

Note: (Formulas)

(1)1+cot^2theta=csc^2theta

(2)1-costheta=2sin^2(theta/2)

(3)sintheta=2sin(theta/2)cos(theta/2)

(4)arctan(tanx)=x

(5)d/(dx)(arc cot x)=-1/(1+x^2)

(6)arctan(-x)=-arctanx