Here,
#y=arctan(x-sqrt(1+x^2))#
We take , #x=cottheta , where, theta in (0,pi)#
#=>theta=arc cot x, x in RR and theta/2 in (0.pi/2)#
#=>y=arctan(cottheta-sqrt(1+cot^2theta))#
#=>y=arctan(cottheta-csctheta)...toapply(1)#
#=>y=arctan[-(csctheta-cottheta)]#
#=>y=-arctan(csctheta-cottheta)...toApply(6)#
#=>y=-arctan(1/sintheta-costheta/sintheta)#
#=>y=-arctan((1-costheta)/sintheta)...toApply(2) and (3)#
#=>y=-arctan((2sin^2(theta/2))/(2sin(theta/2)cos(theta/2)))#
#=>y=-arctan(sin(theta/2)/cos(theta/2))#
#=>y=-arctan(tan(theta/2)) ,where, theta/2 in(0,pi/2)#
#=>y=-theta/2...to Apply(4)#
Subst, back , #theta=arc cot theta#
#y=-1/2arc cot theta#
#=>(dy)/(dx)=-1/2(-1/(1+x^2))...toApply(5)#
#=>(dy)/(dx)=1/(2(1+x^2))#
Note: (Formulas)
#(1)1+cot^2theta=csc^2theta#
#(2)1-costheta=2sin^2(theta/2)#
#(3)sintheta=2sin(theta/2)cos(theta/2)#
#(4)arctan(tanx)=x#
#(5)d/(dx)(arc cot x)=-1/(1+x^2)#
#(6)arctan(-x)=-arctanx#