How do you find the derivative of Inverse trig function y= sec^-1 (sqrt(1-x))?

1 Answer
Jul 2, 2015

Explanation:

y=sec^-1(sqrt(1-x))
sec y =sqrt(1-x)

Now differentiate both sides.

secy tany dy/dx = 1/sqrt(1-x)*-1
dy/dx = -1/(secy tany sqrt(1-x)

We have secy = sqrt(1-x) calculate

tany=sqrt(sec^2y-1)
tany = sqrt((1-x)-1)
tany = sqrt(-x)

Substitute
dy/dx = (-1)/(sqrt((1-x)^2(-x)))