How do you find the derivative of ln(x^2-4)?

1 Answer
Apr 13, 2016

(2x)/(x^2 - 4)

Explanation:

Using the color(blue)" chain rule "

d/dx [ f(g(x)) ] = f'(g(x)) . g'(x)

and the standard derivative D(lnx) = 1/x
"------------------------------------------------------------------"

f(g(x)) = ln(x^2 - 4) rArr f'(g(x)) = 1/(x^2 - 4)

and g(x) = x^2 - 4 rArr g'(x) = 2x
"------------------------------------------------------------------"

rArr d/dx[f(g(x))] = 1/(x^2 - 4) xx 2x = (2x)/(x^2 - 4)