How do you find the derivative of ln(x^2-4)?
1 Answer
Apr 13, 2016
Explanation:
Using the
color(blue)" chain rule "
d/dx [ f(g(x)) ] = f'(g(x)) . g'(x) and the standard derivative
D(lnx) = 1/x
"------------------------------------------------------------------" f(g(x)) =
ln(x^2 - 4) rArr f'(g(x)) = 1/(x^2 - 4) and g(x)
= x^2 - 4 rArr g'(x) = 2x
"------------------------------------------------------------------"
rArr d/dx[f(g(x))] = 1/(x^2 - 4) xx 2x = (2x)/(x^2 - 4)