How do you find the derivative of ln[x^3(x+8)^7(x^2+3)^5]?

2 Answers

d/dx(ln[x^3(x+8)^7(x^2+3)^5])=(20x^3+104x^2+30x+72)/(x^4+8x^3+3x^2+24x)

Explanation:

We use the combination of formulas for finding derivative of natural logarithm and derivative of product of three differentiable function UVW.

d/dx(ln Z)=(1/Z)*d/dx(Z) and
d/dx(UVW)=VW*d/dx(U)+UW*d/dx(V)+UV*d/dx(W)

Let U=x^3 and V=(x+8)^7 and W=(x^2+3)^5

We can use the formulas now

d/dx(ln [x^3(x+8)^7(x^2+3)^5])

=1/(x^3(x+8)^7(x^2+3)^5)*d/dx(x^3(x+8)^7(x^2+3)^5)

=((x+8)^7(x^2+3)^5*d/dx(x^3)+x^3(x^2+3)^5*d/dx(x+8)^7+x^3(x+8)^7*d/dx(x^2+3)^5)/(x^3(x+8)^7(x^2+3)^5)

=((x+8)^7(x^2+3)^5*(3x^2)+x^3(x^2+3)^5*7(x+8)^6+x^3(x+8)^7*5(x^2+3)^4*2x)/(x^3(x+8)^7(x^2+3)^5)

Simplify by factoring

=(x^2(x+8)^6(x^2+3)^4)*(3(x+8)(x^2+3)+7x(x^2+3)+10x^2(x+8))/(x^3(x+8)^7(x^2+3)^5)

=(3(x+8)(x^2+3)+7x(x^2+3)+10x^2(x+8))/(x(x+8)(x^2+3))

=(3x^3+9x+24x^2+72+7x^3+21x+10x^3+80x^2)/(x(x+8)(x^2+3))

(20x^3+104x^2+30x+72)/(x^4+8x^3+3x^2+24x)

God bless.... I hope the explanation is useful.

Apr 24, 2016

I use properties of logarithms to rewrite the expression and get 3/x+7/(x+8)+(10x)/(x^2+3).

Explanation:

Let f(x) = ln[x^3(x+8)^7(x^2+3)^5]

=ln(x^3)+ln(x+8)^7+ln(x^2+3)^5

= 3lnx+7ln(x+8)+5ln(x^2+3).\

So

f'(x) = 3/x+7/(x+8)+5/(x^2+3) d/dx(x^2+3)

= 3/x+7/(x+8)+(10x)/(x^2+3)

Rewrite with a common denominator if you wish.