How do you find the derivative of (ln(x))^x?

1 Answer
Jan 25, 2017

dy/dx=(lnx)^x{1/lnx+ln(lnx)}.

Explanation:

"Let "y=(lnx)^x.

Taking Natural Log. of both sides, & using the Rule of Log. Fun, we get,

lny=xln(lnx)

Now, diff.ing both sides w.r.t. x, we get,

d/dx(lny)=d/dx{xln(lnx)}

=xd/dx{ln(lnx)}+{ln(lnx)}d/dx{x}[because," the Product Rule]"

Now, using the Chain Rule :

(1) : d/dx(lny)=d/dy(lny)(d/dx(y))=1/ydy/dx;

(2) : d/dx{ln(lnx)}=1/lnxd/dx(lnx)=(1/lnx)(1/x)=1/(xlnx);

Therefore, taking (1) and (2) into account, we finally have,

(1/y)(dy/dx)=x{1/(xlnx)}+{ln(lnx)}(1)=1/lnx+ln(lnx)

dy/dx=y{1/lnx+ln(lnx)}, and since, y=(lnx)^x, we have,

dy/dx=(lnx)^x{1/lnx+ln(lnx)}.

Enjoy Maths., and, Spread its Joy!