How do you find the derivative of secx+cscxcscx?

2 Answers
Mar 6, 2017

ddxsecx+cscxcscx=sec2x

Explanation:

Let us first simplify secx+cscxcscx

= 1cosx+1sin1sinx

= (1cosx+1sin)×sinx

= sinxcosx+1

= tanx+1

Hence, ddxsecx+cscxcscx

= ddx(tanx+1)

= sec2x+0

= sec2x

Mar 6, 2017

Since, secx+cscxcscx=secxcscx+cscxcscx=1cosx1sinx+1

=sinxcosx+1=tanx+1,

ddx{secx+cscxcscx}=ddx(tanx+1)=sec2x.