How do you find the derivative of sin^2x^2sin2x2?

1 Answer
Jan 10, 2016

4xsinx^2cosx^2 4xsinx2cosx2

Explanation:

before starting note that sin^2(x) = (sinx)^2sin2(x)=(sinx)2

this form makes it'easier' to apply the chain rule.

rewriting sin^2x^2 = (sinx^2)^2 sin2x2=(sinx2)2

differentiating using the chain rule gives:

2(sinx^2).d/dx(sinx^2) = 2(sinx^2)(cosx^2).d/dx(x^2) 2(sinx2).ddx(sinx2)=2(sinx2)(cosx2).ddx(x2)

= 2(sinx^2)cosx^2(2x) =2(sinx2)cosx2(2x)

rArr d/dx(sin^2x^2 ) = 4xsinx^2cosx^2 ddx(sin2x2)=4xsinx2cosx2