How do you find the derivative of sin(2x)cos(2x)?

1 Answer
Mar 2, 2016

Method 1

Use the product and chain rules.

ddx(sin(2x)cos(2x))=ddx(sin(2x))cos(2x)+sin(2x)ddx(cos(2x))

=[cos(2x)ddx(2x)]cos(2x)+sin(2x)[sin(2x)ddx(2x)]

=2cos2(2x)2sin2(2x)

You can use trigonometry to rewrite this.

Method 2

Use sin(2θ)=2sinθcosθ to write

sin(2x)cos(2x)=12sin(4x)

Now use the chain rule

ddx(12sin(4x))=12cos(4x)ddx(4x)

=12cos(4x)4=2cos(4x)