How do you find the derivative of (sin^2x)(cos^3x)(sin2x)(cos3x)?

1 Answer
Jul 13, 2017

d/(dx)[(cos^3x)(sin^2x)] = color(blue)(2cos^4xsinx - 3cos^2xsin^3xddx[(cos3x)(sin2x)]=2cos4xsinx3cos2xsin3x

Explanation:

We're asked to find the derivative

d/(dx) [(cos^3x)(sin^2x)]ddx[(cos3x)(sin2x)]

The first step we could do is use the product rule, which is

d/(dx) [uv] = v(du)/(dx) + u(dv)/(dx)ddx[uv]=vdudx+udvdx

where in this case

  • u = cos^3xu=cos3x

  • v = sin^2xv=sin2x:

= cos^3x(d/(dx)[sin^2x]) + sin^2x(d/(dx)[cos^3x))=cos3x(ddx[sin2x])+sin2x(ddx[cos3x))

We can differentiate the sin^2xsin2x term via the chain rule, which would look like

d/(dx)[sin^2x] = (du^2)/(du)(du)/(dx)ddx[sin2x]=du2dududx

where

  • u = sinxu=sinx

d/(du) [u^2] = 2uddu[u2]=2u (power rule):

= cos^3x(2d/(dx)[sinx]sinx) + sin^2x(d/(dx)[cos^3x))=cos3x(2ddx[sinx]sinx)+sin2x(ddx[cos3x))

The derivative of sinxsinx is cosxcosx:

= cos^3x(2cosxsinx) + sin^2x(d/(dx)[cos^3x))=cos3x(2cosxsinx)+sin2x(ddx[cos3x))

Simplifying:

= 2cos^4xsinx + d/(dx)[cos^3x]sin^2x=2cos4xsinx+ddx[cos3x]sin2x

We now use the chain rule again for differentiating the cos^3xcos3x term:

d/(dx)[cos^3x] = (du^3)/(du)(du)/(dx)ddx[cos3x]=du3dududx

where

  • u = cosxu=cosx

  • d/(du)[u^3] = 3u^2ddu[u3]=3u2 (power rule):

= 2cos^4xsinx + 3cos^2xd/(dx)[cosx]sin^2x=2cos4xsinx+3cos2xddx[cosx]sin2x

The derivative of cosxcosx is -sinxsinx:

= 2cos^4xsinx - 3cos^2xsinxsin^2x=2cos4xsinx3cos2xsinxsin2x

Simpligying gives

= color(blue)(2cos^4xsinx - 3cos^2xsin^3x=2cos4xsinx3cos2xsin3x