How do you find the derivative of sin(cos(6x))sin(cos(6x))?

2 Answers
Jan 18, 2018

(dy)/(dx)=-6cos(cos(6x))sin(6x)dydx=6cos(cos(6x))sin(6x)

Explanation:

We use the chain rule a bunch.

y=sin(u)y=sin(u), u=cos(v)u=cos(v), v=6xv=6x.

The chain rule says:
dy/dx=dy/(du)*(du)/(dv)*(dv)/(dx)dydx=dydududvdvdx

dy/(du) = cos(u) = cos(cos(v))=cos(cos(6x))dydu=cos(u)=cos(cos(v))=cos(cos(6x))
(du)/(dv)=-sin(v)=-sin(6x)dudv=sin(v)=sin(6x)
(dv)/(dx)=6dvdx=6

So,

(dy)/(dx)=cos(cos(6x))*(-sin(6x))*6dydx=cos(cos(6x))(sin(6x))6

cleaning up:

(dy)/(dx)=-6cos(cos(6x))sin(6x)dydx=6cos(cos(6x))sin(6x)

Jan 18, 2018

-6cos(cos(6x))sin(6x)6cos(cos(6x))sin(6x)

Explanation:

"differentiate using the "color(blue)"chain rule"differentiate using the chain rule

"given "y=f(g(h(x)))" then"given y=f(g(h(x))) then

dy/dx=f'(g(h(x)))xxg'(h(x))xxg'(x)

rArrd/dx(sin(cos(6x))

=cos(cos(6x))xxd/dx(cos(6x))xxd/dx(6x)

=cos(cos(6x))(-sin(6x))(6)

=-6cos(cos(6x))sin(6x)