How do you find the derivative of (x^2)(sinx)(tanx)?
1 Answer
Sep 9, 2017
Explanation:
"differentiate using the "color(blue)"product rule"
"the rule for differentiating the product of 3 functions is"
"given "y=f(x)g(x)h(x)" then"
dy/dx=f'(x)g(x)h(x)+f(x)g'(x)h(x)+f(x)g(x)h'(x)
f(x)=x^2rArrf'(x)=2x
g(x)=sinxrArrg'(x)=cosx
h(x)=tanxrArrh'(x)=sec^2x
"hence derivative"
=2xsinxtanx+x^2cosxtanx+x^2sinxsec^2x