How do you find the derivative of (x^2)(sinx)(tanx)?

1 Answer
Sep 9, 2017

2xsinxtanx+x^2cosxtanx+x^2sinxsec^2x

Explanation:

"differentiate using the "color(blue)"product rule"

"the rule for differentiating the product of 3 functions is"

"given "y=f(x)g(x)h(x)" then"

dy/dx=f'(x)g(x)h(x)+f(x)g'(x)h(x)+f(x)g(x)h'(x)

f(x)=x^2rArrf'(x)=2x

g(x)=sinxrArrg'(x)=cosx

h(x)=tanxrArrh'(x)=sec^2x

"hence derivative"

=2xsinxtanx+x^2cosxtanx+x^2sinxsec^2x