x=tan(x+y)
Diff.ing, both sides w.r.t. y, and keeping in mind the Chain Rule,
dxdy=ddytan(x+y)=(sec2(x+y))ddy(x+y)=sec2(x+y)⋅(dxdy+1)
dxdy−(sec2(x+y))dxdy=sec2(x+y)
{1−sec2(x+y)}dxdy=sec2(x+y)
Using, sec2θ=1+tan2θ, we have,
(−tan2(x+y))dxdy=1+tan2(x+y)
Knowing that, we have tan(x+y)=x.
−x2dxdy=1+x2, giving, dxdy=−1+x2x2
Therefore, dydx=−x21+x2.
Method II
x=tan(x+y)
⇒ddxx=ddx(tan(x+y))
⇒1=sec2(x+y){ddx(x+y)}=sec2(x+y){1+dydx}=(1+x2){1+dydx}
⇒1+dydx=11+x2⇒dydx=11+x2−1=1−1−x21+x2
⇒dydx=−x21+x2, as in Method I !
Method III
x=tan(x+y)
arctanx=x+y⇒arctanx−x=y
⇒dydx=11+x2−1=−x21+x2, as derived before!
Don't you find this Enjoyable?! Spread the Joy of Maths.!