How do you find the derivative of x=tan(x+y)?

1 Answer
Jul 12, 2016

dydx=x21+x2.

Explanation:

x=tan(x+y)

Diff.ing, both sides w.r.t. y, and keeping in mind the Chain Rule,

dxdy=ddytan(x+y)=(sec2(x+y))ddy(x+y)=sec2(x+y)(dxdy+1)

dxdy(sec2(x+y))dxdy=sec2(x+y)

{1sec2(x+y)}dxdy=sec2(x+y)

Using, sec2θ=1+tan2θ, we have,

(tan2(x+y))dxdy=1+tan2(x+y)

Knowing that, we have tan(x+y)=x.

x2dxdy=1+x2, giving, dxdy=1+x2x2

Therefore, dydx=x21+x2.

Method II

x=tan(x+y)

ddxx=ddx(tan(x+y))

1=sec2(x+y){ddx(x+y)}=sec2(x+y){1+dydx}=(1+x2){1+dydx}

1+dydx=11+x2dydx=11+x21=11x21+x2

dydx=x21+x2, as in Method I !

Method III

x=tan(x+y)

arctanx=x+yarctanxx=y

dydx=11+x21=x21+x2, as derived before!

Don't you find this Enjoyable?! Spread the Joy of Maths.!