How do you find the derivative of y= 2secx + tanxy=2secx+tanx?

1 Answer
Nov 3, 2016

(dy)/(dx)=secx(2tanx+secx)dydx=secx(2tanx+secx)

Explanation:

Since there is only a simple addition operation, 2secx2secx and tanxtanx can be derived independently.

d/(dx)2secx=2secxtanx->ddx2secx=2secxtanxsince d/(dx)secx=secxtanxddxsecx=secxtanx

d/(dx)tanx=sec^2xddxtanx=sec2x

:.(dy)/(dx)=2secxtanx+sec^2x=secx(2tanx+secx)